Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Rep ; 14(1): 9795, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684844

RESUMEN

Cardiac fibrosis contributes to the development of heart failure, and is the response of cardiac fibroblasts (CFs) to pressure or volume overload. Limiting factors in CFs research are the poor availability of human cells and the tendency of CFs to transdifferentiate into myofibroblasts when cultured in vitro. The possibility to generate CFs from induced pluripotent stem cells (iPSC), providing a nearly unlimited cell source, opens new possibilities. However, the behaviour of iPSC-CFs under mechanical stimulation has not been studied yet. Our study aimed to assess the behaviour of iPSC-CFs under mechanical stretch and pro-fibrotic conditions. First, we confirm that iPSC-CFs are comparable to primary CFs at gene, protein and functional level. Furthermore, iPSC-derived CFs adopt a pro-fibrotic response to transforming growth factor beta (TGF-ß). In addition, mechanical stretch inhibits TGF-ß-induced fibroblast activation in iPSC-CFs. Thus, the responsiveness to cytokines and mechanical stimulation of iPSC-CFs demonstrates they possess key characteristics of primary CFs and may be useful for disease modelling.


Asunto(s)
Fibroblastos , Células Madre Pluripotentes Inducidas , Factor de Crecimiento Transformador beta , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/citología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Estrés Mecánico , Células Cultivadas , Diferenciación Celular , Miocardio/citología , Miocardio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citología , Fibrosis
2.
Crit Care ; 28(1): 65, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424569

RESUMEN

SARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.


Asunto(s)
COVID-19 , Hiperglucemia , Resistencia a la Insulina , Humanos , Hiperglucemia/tratamiento farmacológico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , SARS-CoV-2
3.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396460

RESUMEN

Serum biomarkers and lung ultrasound are important measures for prognostication and treatment allocation in patients with COVID-19. Currently, there is a paucity of studies investigating relationships between serum biomarkers and ultrasonographic biomarkers derived from lung ultrasound. This study aims to assess correlations between serum biomarkers and lung ultrasound findings. This study is a secondary analysis of four prospective observational studies in adult patients with COVID-19. Serum biomarkers included markers of epithelial injury, endothelial dysfunction and immune activation. The primary outcome was the correlation between biomarker concentrations and lung ultrasound score assessed with Pearson's (r) or Spearman's (rs) correlations. Forty-four patients (67 [41-88] years old, 25% female, 52% ICU patients) were included. GAS6 (rs = 0.39), CRP (rs = 0.42) and SP-D (rs = 0.36) were correlated with lung ultrasound scores. ANG-1 (rs = -0.39) was inversely correlated with lung ultrasound scores. No correlations were found between lung ultrasound score and several other serum biomarkers. In patients with COVID-19, several serum biomarkers of epithelial injury, endothelial dysfunction and immune activation correlated with lung ultrasound findings. The lack of correlations with certain biomarkers could offer opportunities for precise prognostication and targeted therapeutic interventions by integrating these unlinked biomarkers.

4.
Pulm Circ ; 14(1): e12316, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274560

RESUMEN

The correlation between hemodynamics and degree of pulmonary vascular obstruction (PVO) is known to be poor in chronic thromboembolic pulmonary hypertension (CTEPH), which makes the selection of patients eligible for pulmonary endarterectomy (PEA) challenging. It can be postulated that patients with similar PVO but different hemodynamic severity have different postoperative hemodynamics and exercise capacity. Therefore, we aimed to assess the effects of PEA on hemodynamics and exercise physiology in mild and severe CTEPH patients. We retrospectively studied 18 CTEPH patients with a mild hemodynamic profile (mean pulmonary arterial pressure [mPAP] between 25 and 30 mmHg at rest) and CTEPH patients with a more severe hemodynamic profile (mPAP > 30 mmHg), matched by age, gender, and PVO. Cardiopulmonary exercise testing parameters were evaluated at baseline and 18 months following PEA. At baseline, exercise capacity, defined as oxygen uptake, was less severely impaired in the mild CTEPH group compared to the severe CTEPH group. After PEA, in the mild CTEPH group, ventilatory efficiency and oxygen pulse improved significantly (p < 0.05), however, the change in ventilatory efficiency and oxygen pulse was smaller compared to the severe CTEPH group. Only in the severe CTEPH group exercise capacity improved significantly (p < 0.001). Hence, in the present study, postoperative hemodynamic outcome and the CPET-determined recovery of exercise capacity in mild CTEPH patients did not differ from a matched group of severe CTEPH patients.

5.
Nat Commun ; 15(1): 744, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272877

RESUMEN

The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).


Asunto(s)
COVID-19 , Humanos , Enfermedad Crítica , SARS-CoV-2 , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteómica , Inflamación , Biomarcadores
6.
Ultrasound J ; 15(1): 40, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782370

RESUMEN

BACKGROUND: Lung ultrasound (LUS) can detect pulmonary edema and it is under consideration to be added to updated acute respiratory distress syndrome (ARDS) criteria. However, it remains uncertain whether different LUS scores can be used to quantify pulmonary edema in patient with ARDS. OBJECTIVES: This study examined the diagnostic accuracy of four LUS scores with the extravascular lung water index (EVLWi) assessed by transpulmonary thermodilution in patients with moderate-to-severe COVID-19 ARDS. METHODS: In this predefined secondary analysis of a multicenter randomized-controlled trial (InventCOVID), patients were enrolled within 48 hours after intubation and underwent LUS and EVLWi measurement on the first and fourth day after enrolment. EVLWi and ∆EVLWi were used as reference standards. Two 12-region scores (global LUS and LUS-ARDS), an 8-region anterior-lateral score and a 4-region B-line score were used as index tests. Pearson correlation was performed and the area under the receiver operating characteristics curve (AUROCC) for severe pulmonary edema (EVLWi > 15 mL/kg) was calculated. RESULTS: 26 out of 30 patients (87%) had complete LUS and EVLWi measurements at time point 1 and 24 out of 29 patients (83%) at time point 2. The global LUS (r = 0.54), LUS-ARDS (r = 0.58) and anterior-lateral score (r = 0.54) correlated significantly with EVLWi, while the B-line score did not (r = 0.32). ∆global LUS (r = 0.49) and ∆anterior-lateral LUS (r = 0.52) correlated significantly with ∆EVLWi. AUROCC for EVLWi > 15 ml/kg was 0.73 for the global LUS, 0.79 for the anterior-lateral and 0.85 for the LUS-ARDS score. CONCLUSIONS: Overall, LUS demonstrated an acceptable diagnostic accuracy for detection of pulmonary edema in moderate-to-severe COVID-19 ARDS when compared with PICCO. For identifying patients at risk of severe pulmonary edema, an extended score considering pleural morphology may be of added value. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04794088, registered on 11 March 2021. European Clinical Trials Database number 2020-005447-23.

7.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699657

RESUMEN

Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inflamación/tratamiento farmacológico , Inmunoglobulina G/farmacología
8.
Crit Care ; 27(1): 226, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291677

RESUMEN

PURPOSE: A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. RESULTS: 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI - 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (- 1.17 ml/kg, 95% CI - 1.87 to - 0.44). CONCLUSIONS: IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23).


Asunto(s)
COVID-19 , Edema Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/complicaciones , Mesilato de Imatinib/efectos adversos , Pulmón , Método Doble Ciego
9.
Circulation ; 147(21): 1606-1621, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37066790

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS: CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS: CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Estudio de Asociación del Genoma Completo , Células Endoteliales/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar , Hipoxia/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Factores de Transcripción/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
10.
Eur J Pharm Sci ; 184: 106418, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870577

RESUMEN

INTRODUCTION: In the randomized double-blind placebo-controlled CounterCOVID study, oral imatinib treatment conferred a positive clinical outcome and a signal for reduced mortality in COVID-19 patients. High concentrations of alpha-1 acid glycoprotein (AAG) were observed in these patients and were associated with increased total imatinib concentrations. AIMS: This post-hoc study aimed to compare the difference in exposure following oral imatinib administration in COVID-19 patients to cancer patients and assess assocations between pharmacokinetic (PK) parameters and pharmacodynamic (PD) outcomes of imatinib in COVID-19 patients. We hypothesize that a relatively higher drug exposure of imatinib in severe COVID-19 patients leads to improved pharmacodynamic outcome parameters. METHODS: 648 total concentration plasma samples obtained from 168 COVID-19 patients were compared to 475 samples of 105 cancer patients, using an AAG-binding model. Total trough concentration at steady state (Cttrough) and total average area under the concentration-time curve (AUCtave) were associated with ratio between partial oxygen pressure and fraction of inspired oxygen (P/F), WHO ordinal scale (WHO-score) and liberation of oxygen supplementation (O2lib). Linear regression, linear mixed effects models and time-to-event analysis were adjusted for possible confounders. RESULTS: AUCtave and Cttrough were respectively 2.21-fold (95%CI 2.07-2.37) and 1.53-fold (95%CI 1.44-1.63) lower for cancer compared to COVID-19 patients. Cttrough, not AUCtave, associated significantly with P/F (ß=-19,64; p-value=0.014) and O2lib (HR 0.78; p-value= 0.032), after adjusting for sex, age, neutrophil-lymphocyte ratio, dexamethasone concomitant treatment, AAG and baseline P/F-and WHO-score. Cttrough, but not AUCtave associated significantly with WHO-score. These results suggest an inverse relationship between PK-parameters, Cttrough and AUCtave, and PD outcomes. CONCLUSION: COVID-19 patients exhibit higher total imatinib exposure compared to cancer patients, attributed to differences in plasma protein concentrations. Higher imatinib exposure in COVID-19 patients did not associate with improved clinical outcomes. Cttrough and AUCtave inversely associated with some PD-outcomes, which may be biased by disease course, variability in metabolic rate and protein binding. Therefore, additional PKPD analyses into unbound imatinib and its main metabolite may better explain exposure-response.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Reposicionamiento de Medicamentos , Neoplasias/tratamiento farmacológico
11.
Circ Res ; 132(3): 355-378, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36730379

RESUMEN

The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.


Asunto(s)
Células Endoteliales , Integrinas , Integrinas/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Uniones Célula-Matriz/metabolismo , Endotelio Vascular/metabolismo , Adhesión Celular/fisiología
12.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L38-L47, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36348302

RESUMEN

Pulmonary edema is a central hallmark of acute respiratory distress syndrome (ARDS). Endothelial dysfunction and epithelial injury contribute to alveolar-capillary permeability but their differential contribution to pulmonary edema development remains understudied. Plasma levels of surfactant protein-D (SP-D), soluble receptor for advanced glycation end products (sRAGE), and angiopoietin-2 (Ang-2) were measured in a prospective, multicenter cohort of invasively ventilated patients. Pulmonary edema was quantified using the radiographic assessment of lung edema (RALE) and global lung ultrasound (LUS) score. Variables were collected within 48 h after intubation. Linear regression was used to examine the association of the biomarkers with pulmonary edema. In 362 patients, higher SP-D, sRAGE, and Ang-2 concentrations were significantly associated with higher RALE and global LUS scores. After stratification by ARDS subgroups (pulmonary, nonpulmonary, COVID, non-COVID), the positive association of SP-D levels with pulmonary edema remained, whereas sRAGE and Ang-2 showed less consistent associations throughout the subgroups. In a multivariable analysis, SP-D levels were most strongly associated with pulmonary edema when combined with sRAGE (RALE score: ßSP-D = 6.79 units/log10 pg/mL, ßsRAGE = 3.84 units/log10 pg/mL, R2 = 0.23; global LUS score: ßSP-D = 3.28 units/log10 pg/mL, ßsRAGE = 2.06 units/log10 pg/mL, R2 = 0.086), whereas Ang-2 did not further improve the model. Biomarkers of epithelial injury and endothelial dysfunction were associated with pulmonary edema in invasively ventilated patients. SP-D and sRAGE showed the strongest association, suggesting that epithelial injury may form a final common pathway in the alveolar-capillary barrier dysfunction underlying pulmonary edema.


Asunto(s)
COVID-19 , Edema Pulmonar , Síndrome de Dificultad Respiratoria , Enfermedades Vasculares , Humanos , Edema Pulmonar/etiología , Estudios Prospectivos , Proteína D Asociada a Surfactante Pulmonar , Respiración Artificial/efectos adversos , Ruidos Respiratorios , Biomarcadores/metabolismo , Receptor para Productos Finales de Glicación Avanzada
13.
Perfusion ; 38(2): 418-421, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34962840

RESUMEN

Tyrosine kinase inhibitors (TKI) are known to be highly effective in the treatment of various cancers with kinase-domain mutations such as chronic myelogenous leukemia. However, they have important side effects such as increased vascular permeability and pulmonary hypertension. In patients undergoing pulmonary endarterectomy with deep hypothermic circulatory arrest, these side effects may exacerbate postoperative complications such as reperfusion edema and persistent pulmonary hypertension. We report on a simple modification of the perfusion strategy to increase intravascular oncotic pressure by retrograde autologous priming and the addition of packed cells and albumin in a patient treated with a TKI.


Asunto(s)
Neoplasias Hematológicas , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/cirugía , Perfusión/efectos adversos , Endarterectomía/métodos , Neoplasias Hematológicas/complicaciones , Embolia Pulmonar/complicaciones
14.
Pulm Circ ; 12(4): e12146, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36568694

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by elevated pulmonary arterial pressure and organized thrombi within pulmonary arteries. Riociguat is a soluble guanylate cyclase stimulator and is approved for patients with inoperable CTEPH or residual pulmonary hypertension after pulmonary endarterectomy (PEA). Previous work suggested that riociguat treatment is associated with an increased risk of bleeding, although the mechanism is unclear. The aim of this study is to assess how riociguat affects primary hemostasis by studying its effect on the interaction between platelets and endothelial cells derived from CTEPH patients. Pulmonary artery endothelial cells (PAECs) were isolated from thrombus-free regions of PEA material. Purified PAECs were cultured in flow chambers and were stimulated with 0.1 and 1 µM riociguat for 24 h before flow experiments. After stimulation with histamine, PAECs were exposed to platelets under shear stress. Platelet adhesion and expression of von Willebrand Factor (VWF) were evaluated to assess the role of riociguat in hemostasis. Under dynamic conditions, 0.1 and 1.0 µM of riociguat suppressed platelet adhesion on the surface of PAECs. Although riociguat did not affect intracellular expression and secretion of VWF, PAECs stimulated with riociguat produced fewer VWF strings than unstimulated PAECs. Flow cytometry suggested that decreased VWF string formation upon riociguat treatment may be associated with suppressed cell surface expression of P-selectin, a protein that stabilizes VWF anchoring on the endothelial surface. In conclusion, Riociguat inhibits VWF string elongation and platelet adhesion on the surface of CTEPH-PAECs, possibly by reduced P-selectin cell surface expression.

15.
Arterioscler Thromb Vasc Biol ; 42(11): 1307-1320, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36172866

RESUMEN

Increasing evidence indicates that inflammation promotes thrombosis via a VWF (von Willebrand factor)-mediated mechanism. VWF plays an essential role in maintaining the balance between blood coagulation and bleeding, and inflammation can lead to aberrant regulation. VWF is regulated on a transcriptional and (post-)translational level, and its secretion into the circulation captures platelets upon endothelial activation. The significant progress that has been made in understanding transcriptional and translational regulation of VWF is described in this review. First, we describe how VWF is regulated at the transcriptional and post-translational level with a specific focus on the influence of inflammatory and immune responses. Next, we describe how changes in regulation are linked with various cardiovascular diseases. Recent insights from clinical diseases provide evidence for direct molecular links between inflammation and thrombosis, including atherosclerosis, chronic thromboembolic pulmonary hypertension, and COVID-19. Finally, we will briefly describe clinical implications for antithrombotic treatment.


Asunto(s)
COVID-19 , Trombosis , Enfermedades de von Willebrand , Humanos , Factor de von Willebrand/genética , Fibrinolíticos/uso terapéutico , Plaquetas , Inflamación/genética
16.
J Cardiovasc Pharmacol ; 80(6): 783-791, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976136

RESUMEN

ABSTRACT: Although previous studies support the clinical benefit of imatinib regarding respiratory status in hospitalized patients with COVID-19, potential cardiotoxicity may limit its clinical application. This study aimed to investigate the cardiac safety of imatinib in COVID-19. In the CounterCOVID study, 385 hospitalized hypoxemic patients with COVID-19 were randomly assigned to receive 10 days of oral imatinib or placebo in a 1:1 ratio. Patients with a corrected QT interval (QTc) >500 ms or left ventricular ejection fraction <40% were excluded. Severe cardiac adverse events were monitored for 28 days or until death occurred. Electrocardiogram measurements and cardiac biomarkers were assessed repeatedly during the first 10 days. A total of 36 severe cardiac events occurred, with a similar incidence in both treatment groups. No differences were observed in the computer-generated Bazett, manually interpreted Bazett, or Fridericia-interpreted QTcs. No clinically relevant alterations in other electrocardiogram parameters or plasma high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentrations were observed. Similar findings were observed in a subgroup of 72 patients admitted to the intensive care unit. In the univariate and multivariable linear mixed models, treatment with imatinib was not significantly associated with QT interval duration, hs-cTnT, or NT-proBNP levels. In conclusion, imatinib treatment did not result in more cardiac events, QT interval prolongation, or altered hs-cTnT or NT-proBNP levels. This suggests that treatment with imatinib is safe in hospitalized patients with COVID-19 with a QTc duration of less than 500 ms and left ventricular ejection fraction >40%.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Mesilato de Imatinib/efectos adversos , Volumen Sistólico , Función Ventricular Izquierda
17.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35896211

RESUMEN

BACKGROUND: Imatinib reduced 90-day mortality in hospitalised coronavirus disease 2019 (COVID-19) patients in a recent clinical trial, but the biological effects that cause improved clinical outcomes are unknown. We aimed to determine the biological changes elicited by imatinib in patients with COVID-19 and what baseline biological profile moderates the effect of imatinib. METHODS: We undertook a secondary analysis of a randomised, double-blind, placebo-controlled trial of oral imatinib in hospitalised, hypoxaemic COVID-19 patients. Mediating effects of changes in plasma concentration of 25 plasma host response biomarkers on the association between randomisation group and 90-day mortality were studied by combining linear mixed effect modelling and joint modelling. Moderation of baseline biomarker concentrations was evaluated by Cox regression modelling. We identified subphenotypes using Ward's method clustering and evaluated moderation of these subphenotypes using the aforementioned method. RESULTS: 332 out of 385 participants had plasma samples available. Imatinib increased the concentration of surfactant protein D (SP-D), and decreased the concentration of interleukin-6, procalcitonin, angiopoietin (Ang)-2/Ang-1 ratio, E-selectin, tumour necrosis factor (TNF)-α, and TNF receptor I. The effect of imatinib on 90-day mortality was fully mediated by changes in these biomarkers. Cluster analysis revealed three host response subphenotypes. Mortality benefit of imatinib was only present in the subphenotype characterised by alveolar epithelial injury indicated by increased SP-D levels in the context of systemic inflammation and endothelial dysfunction (hazard ratio 0.30, 95% CI 0.10-0.92). CONCLUSIONS: The effect of imatinib on mortality in hospitalised COVID-19 patients is mediated through modulation of innate immune responses and reversal of endothelial dysfunction, and possibly moderated by biological subphenotypes.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Mesilato de Imatinib , Inmunomodulación , Humanos , Biomarcadores , COVID-19/mortalidad , Mesilato de Imatinib/uso terapéutico , Proteína D Asociada a Surfactante Pulmonar
18.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35651362

RESUMEN

Rationale: The blood is a rich source of potential biomarkers for the diagnosis of idiopathic and hereditary pulmonary arterial hypertension (iPAH and hPAH, referred to as "PAH"). While a lot of biomarkers have been identified for PAH, the clinical utility of these biomarkers often remains unclear. Here, we performed an unbiased meta-analysis of published biomarkers to identify biomarkers with the highest performance for detection of PAH. Methods: A literature search (in PubMed, Embase.com, Clarivate Analytics/Web of Science Core Collection and Wiley/Cochrane Library) was performed up to 28 January 2021. Primary end points were blood biomarker levels in PAH versus asymptomatic controls or patients suspected of pulmonary hypertension (PH) with proven normal haemodynamic profiles. Results: 149 articles were identified by the literature search. Meta-analysis of 26 biomarkers yielded 17 biomarkers that were differentially expressed in PAH and non-PH control subjects. Red cell distribution width, low density lipid-cholesterol, d-dimer, N-terminal prohormone of brain natriuretic protein (NT-proBNP), interleukin-6 (IL-6) and uric acid were biomarkers with the largest observed differences, largest sample sizes and a low risk of publication bias. Receiver operating characteristic curves and sensitivity/specificity analyses demonstrated that NT-proBNP had a high sensitivity, but low specificity for PAH. For the other biomarkers, insufficient data on diagnostic accuracy with receiver operating characteristic curves were available for meta-analysis. Conclusion: This meta-analysis validates NT-proBNP as a biomarker with high sensitivity for PAH, albeit with low specificity. The majority of biomarkers evaluated in this meta-analysis lacked either external validation or data on diagnostic accuracy. Further validation studies are required as well as studies that test combinations of biomarkers to improve specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...